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GENERAL INTRODUCTION

The successful prediction of the performance of a new or modified
aircraft depends as much on the availability of an accurate estimate of
the configuration's {ift and drag characteristics as on any one thing.
Despite the importance of t+his task, the procedure used in the light
aircraft industry and that taught in most universities has remained essen-
tially a semi-empirical correlation of wind tunnel and flight test data
plus a collection of useful rules of thumb. The major airframe manufac-
turers and their cognizant governmental laboratories have for some time
sought both To reduce the time needed to develop these predictions and tfo
increase their accuracy and reliability through the use of laraqe-scale
digital computers. Employing long=-known, highly rigorous analytical
computation methods which become too involved when applied *o complete
aircraft for one to perform manual ly, fthese groups have, within the lasT
three-to-six years, achieved some remarkable successes In predicting the
aerodynamic characteristics of complex geometric shapes.

it is the intention of the present work

- to review analytical and experimental developments 1n aerodynamics
of the past 32 years, in particular those of the Naticnal Aeronautics
and Space Administration,

- to identify those of special pertinance to the design of light
aircraft and

- to develop from these easy-to-use design procedures.

0f necessity fhese procedures will involve digital computer programs. This
approach follows that employed in earlier works in this series. Reference 1,
for example, provides detailed computer programs for the prediction of point
and path performance assuming that the Iift, drag, and thrust characteristics
are known. References 2 and 3 give programs for the calcdlation of stabiiiTy
derivatives and aircraft motions given the vehicle's gecmetric and inertial
characteristics. Thus with these and the present work The reader can specify
the aircraft geometry, mass distribution, and thrusT applied fo the air and
expect to obtain the vehicle's performance and its handling qualifies. He
can then vary the geometry, etc. in a systematic fashion and find the shape
giving the mosT satisfactory combination of performance and hancling qualities.

While the availability of these programs will certainly be of greaf
assistance in the overall design fask, it should be noted that many areas of
aircraft configuration design have not been +reated in detail or have not
been programmed for computer solution in the work to date. These include
large excursions in the motions about an equilibrium position, performance
in the horizontal plane, takeoff and landing, aerodynamic characteristics
at high angles of attack and/or with deflected flaps, flight in turbulent
air, calculation of stick and rudder forces and deflections, propelter

slipstream effects, adequate representations of thrust horsepower and fuel



flow, and the effects of specific stabillty augmentation systems. It Is

the authors' ultimate intention to treat all of these problems in the manner
of the programs included in the present work. Theziﬂgp#&, however, be
pleased to receive suggestions from readers and usefs of the work as to the
priority with which the problems should be attacked.

The present work depqatﬁ‘ﬂ:m1The practice of previous works In this
series in that the computer programs presented are usually modifications
(generaliy simplifications) of elaborate programs in use at government
facilities rather than original efforts. This was done to take advantage
of the rather substantial effort which went Into the preparation of these
programs. Each program which was used has shown good agreement with
experiment in at least a Iimited number of cases. Such a practice also
has a number of disadvantages:

1. The avallable documentation Is usually very sketchy and frequently
inconsistent with the program statements and/or logic. As a
result it Is very difficult to determine in detall the method
on which the program is based and +he validity and/or applicabllity
of the methods.

2. The programs usually contain many more options than are needed
for the present purposes. I+ Is often difficult to unravel the
program to the point that these unneeded options can be removed
successfully.

3. The programs are usually written to take advantage of the char-
acteristics of a particular machine whlch limits their transfer-
ability to other machines.

4. In every case the programs are written for very large machlines.
Smaller machines generally have Insufficient storage capaclty
even to compile the programs. In order to use them on smaller
machines one must devise a means of splitting a program into
several parts or employing a form of virtual storage.

The present work represents an effort at overcoming these disadvantages.
I+ begins with a review of the literature on the estimation of |if+ and
drag characteristics of wings, wing-bodies, and complete aircraft confligu-
rations. Among those treated in this discussion are a group of government
reports which describe computer programs for performing various portions
of this estimation task in a rapid but accurate manner. Several of these
programs appeared to offer a sufficlent reduction in the cost of estimating
the aerodynamic characteristics of new or modified deslgns that It seemed
desirable to adapt them for use with I1ght aircraft, the computer capabl|itles
of this industry, and as an instructional device for fledgling deslgners.
For these reasons, those portions of the programs dealing with the effects
of flap deflections have been removed. The modified programs are therefore
more applicable to the hlgher speed portions of the flight profile. Studles
are currently underway of means for Including the computation of these
effects with reasonable additional computer requirements.,



In the next section of the work the theoretical bases of the recommended
programs are discussed starting from first principles. It shoutd be empha-
sized that the methods described are not always exactly those used by the
computer programs. The approach to the problem is usually the same but
the details are frequently quite different. This has been done because,
as noted above, the details of the methods actually used are obscure, at
jeast to the present authors, and because a different treatment was regarded
as being easier for those approaching the area for the first time to
understand.

. Following this discussion is a review of the changes in the programs
lnsTrugTions for their use, and some samplie results. |Included also are ’
append!ces providing local ly-written computer programs found useful for
producing analytical check cases, simple approximate solutions fo more
general computations, or extensions of the range of the major programs to
other speed regimes.

The present work is intended to serve several needs. Its primary
function is to provide the practicing light ajrcraft designer with a
powerful tool for reducing the engineering labor needed tfo develop a new
airplane or revise an existing one. Hopefully, it is written at such a
level and in sufficient depth that the user will be able to gain an under-
standing of the limitations imposed on the attainable accuracy by the choice
of physical and mathematical models as well as an appreciation for the new
capabilities provided by the programs and Instructions for their use. By
keeping the mathematical sophistication required for comprehension fo a
minimum and by emphasizing physical descriptions of the means by which flows
over aircraft are represented, it is hoped that undergraduate aeronautical
engineering students will also $ind the work both helpful and illuminating.
|+ seems unfortunate that because of time limitations, a lack of technical
maturity on the student's part, and a reluctance on many educators' part
to depart from traditional practice, flight vehicle design is still taught
largely as a semi-empirical art rather than as the near-science which it
has lately become. Perhaps with the aid of these more powerful less
+ime-consuming tools the student can now successfully complete more real-
istic design problems during his undergraduate education.






LITERATURE REVIEW AND THEORETICAL

BASIS OF COMPUTER PROGRAMS



LITERATURE REVIEW

INTROCUCT | ON

Given the task of creating an entirely new airplane, the designer will
usually seek to devise first a wing geometry and, ultimately, a whole
airplane geometry that

1. provides the required Iif*t

2. has suitable stall characteristics

3. has minimum drag for good performance

4, has good stability and control characteristics
5. meets structural reguirements

6. is easy to build.

He will usually select a configuration that satisfies the last two obiectives
reasonably well and then attempt to determine how well the configuration
meets the other objectives. He recegnizes that he need not calculate the
aerodynamic forces acting on the vehicle with great accuracy in order to
determine the flying quatities. On the other hand, if he is to predict

the craft's performance with reasonable accuracy, he must know the |ift

and drag as precisely as possible.

From the viewpoint of designers active during the early years of this
century the analysis process was very i!l-defined. One did not then even
know how much wing he should provide or what shape to make it in order
to insure that his aircraft would fly. Being able to estimate how fast
or how far his craft might go seemed a matter of secondary concern to the
more urgent problem of how much |ift is associated with a particular geometry.
A systematic study of this problem would seem to begin with consideration
of the 1ift developed by a slice or section out of the wing. Modeling the
problem in this fashion has the advantage that one need consider only flow
in two dimensions rather than in three, a great mathematical simplification.
Further it would seem reasonable to assume that the fluid is inviscid if
for no other reason than to take advantage of the extensive analytical studies
{(particularly those of Helmholtz (Ref. 4) and Kirchhoff (Ref. 5)) that had been
carried out for this case during the nineteenth century. These studies had
been successful at explaining several experimental facts and present far
less mathematical difficulty than one would encounter working the more
general equations for the flow of a viscous fluid formuiated by Navier and
by Stokes about 1840. A good account of much of this work may be found in
Lamb (Ref. 6).

The immensity of the problem facing.engineers in 1900 trying to devise
a rational means of calculating wing lift can be better appreciated when



one realizes that in the contemporary view |ift was the force reacting to
the change in the momentum of the airstream striking the inclined lower
surface of wing. Such a force would be proportional to sin? o where o 15
the angle by which the jower surface is inclined fo the wind. | f one were
to assume that a wing is flying af f{1fty miles an hour with o = 6%, then
it could develop about 0.0635 pounds of |ift per square foot of surface,
according to this fheory. Since 1t was then impossible 1o build & wing
{ighter than this weight, many scientists confidently predicted that man
would never fly. More preceptive individuals noted however that The
flight of gliders could not be explained by such small values of 1ift

and therefore something mus?t be wrong with the theory.

THE AIRFOIL IN INVISCID FLOW

Lord Rayleigh had shown in 1878 that the swerving flight of a "eut!
tennis ball could be explained at least in general terms by comparing it 1o
the case of a cylinder placed in an inviscid uniform stream. By superposing
a circulatory flow upon the cylinder, the cylinder developed a force normal
to the direction of the uniform stream, directly proportional to the strength
of the circulatory flow. This result along with the earlier work of Helmholtz
and Kirchhoff was known to the German mathematician M. W. Kutta who was
interested in why cambered airfoils produce lift at a = 0. In a 1902 paper
(Ref. 7) he studied a thin airfoil formed by a circular arc. He conc luded
that the only reasonable assumption one could make in view of what was
known physically was that the flow velocity over the upper surface was
equal to that over the lower surface at the trailing edge. The flow wou ld
therefore leave the surface smoothiy at finite velocity. He was willing
to accept the idea of an infinite velocity at the sharp leading edge, a
situation studied by Helmholtz, in order to obtain an approximafe solution
for the lift. Von K&rmén (Ref. 8) gives a highly readable account of fhis
early work.

Joukowski (Ref. 9), working independentiy along somewhat parallel
lines, was able to obtain exact solutions for a certain class of airfoils
in inviscid flow. He first showed that when a cylindrical body of arbitrary
cross-section moves with velocity, V, in a fluid whose density is p and
there is a circulation of the magnitude, T, around the body, a force is
produced equal to the product pVI per unit length of the cylinder. The
direction of the force is normal both to the velocity, V, and the axis of
the cylinder. Joukowski also assumed the flow fo leave the airfoil smoothly
at the trailing edge. By means of this hypothesis the whole problem of
1ift becomes purely mathematical: one has only to determine the amount of
circulation so that for zero vertex angle at fhe trailing edge the velocity
of the flow leaving the upper surface is equal to the flow leaving the lower
surface. |f the fangents to the upper and lower surfaces form a finite
angle, the trailing edge is a stagnation point.

Joukowski then found a transformation, ¢ = z * c?/z, by which a circle
in the z-plane becomes an airfoil in the g-plane. See the following sketch.
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According to the transformation, a point represented by z = x + iy in the

X,y plane is moved to a different location in the &,n piane. In the process,

all the other points in the plane are moved in such a way that the figure
of a circle in the X,y plane becomes an airfoil in the £,n plane. Under
Joukowski's transform the shape of the airfoil may be changed to a
considerable extent by moving the center of the circle (originally at 0)
to some other location M while keeping the point at which the circle
crosses the x-axis in the left hatf-plane at B. To see how this happens
it is instructive to carry out a sample calculation.

The general equation of a circle is of course

(x - x)? + (y - y1)? = a?

2 _ 2 _ 2
where x; = a cos B- c=3__7C° - m®
2C
y; = asinB
in the notation of the sketch. For simplicity one may assume that in this
calculation B = 0. Then

[x = (@ -C)J% + y2 = 42

or y = Y2(a - C)x + 2aC - C? - x?
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Substituting values for x* + y2 and y into this expresion yields

CZ
= 1 +
bEx ( 2aC - C? + 2x(a = c))

c? :
i - V2(a - C)x + 2aC - C% - x*,
T (1 2aC - C% + 2x(a - C) ) 2(a 8 @

Since a and C are arbitrary numbers, choosing x completely specifies the

value of ¢. For example, let C = 1 and a = 1.1. For this special case
the previous equation becomes
- S B : -\ 3
c‘_x(1+1,2+0.2x)+'(]—1.2+0.2x) 1.2 + 0.2x - x

The equation is easily evaluated and the results presented in tabular form.
The table below may be extended to determine the shape of the resulting
figure more accurately, if desired.

X g n
1.2 2.035 0.

] 1.707 +.1855
1. 1.707 -.1855
0.5 0.885 +,236
0.5 0.885 -.236
0 0. +.182
0. 0. -.182
-1. -2. 0.

Even from this limited set of numbers, however, it is apparent that for
these values of a and C the circle maps into a symmetrical airfoil-like
figure of high thickness-to-chord ratio. Moving M to the right increases
airfoil thickness while moving M in the y-direction adds camber to the
airfoil. Note that the airfoil chord is approximately 4C. Note also that
point A becomes the leading edge of the mean camber line and point B the
trailing edge of the airfoil under the transformation. When the angle of
attack is changed, the flow strikes the airfoil from a different direction,
To represent this situation, the strength of the circulation must be changed
so that as far as the flow over the cylinder in the x-y plane is concerned
the forward stagnation point has moved to some new location obtained by
rotating the line MA through an angle &, o being positive when A moves down
(y becomes negative). The location of the rear stagnation point must, for
reasons pointed out in the next chapter, remain fixed during this operation.



Since the transformation is conformal, the fluid velocity and pressure
which exist at any point on the surface of the cylinder can be related
quantitatively, as indicated below, to those which exist at the corresponding
point on the airfoil. Integration of these pressures in fthe direction nocrmal
to the free stream velocity then gives the airfoil |ift (which is also the
same as the |ift produced by the generating cylinder).

For the cylinder, the surface velocity components are given by

C
i

V cos all - cos 208) + sin o sin 206 ] + 5%17
a

I'x
2

<
(

= Vlcos a sin 20 - sin a(l - cos 20) . -
2na

while the surface pressures are given by

_ _Bf 2
PCIRCLE = TSTAGNATION ~ 2 (“ tv )

Here 8 is the angular l|ocation of the point of interest on the surface
measured from the negative x-axis. Hence x = a cos 6 and y = a sin 6, One
may use these values in the procedure outlined above to find that location
on the airfoil corresponding to 8. The velocity on the airfoil surface is
simply the velocity at the equivalent point on the circle times )dz/dcl.
From the transform

dz

dz

z
- C%/z

_ 1
- ‘l - C%/z° z

_ 1
- Idc/dz

thus the airfoil surface pressure is given by

z

z - C%/z

_ _Pf 2
PairFoIL T PsTagNATION ~ 2 (“ tv >

IT is interesting to note that while the Theory places no Iimit on
the magnitude of T, a value greater than I' = 2nVa means that the front
and rear stagnation points have come together and are moving away from the
circle atong the ray 6 = -m/2, clearly a physically impossible situation
since it would mean a strong cyclonic flow was present about the airfoil.
in actual cases I seldom exceeds mVa/4.

The Joukowski fransform technique was a great step forward in analyzing
the |ift of airfoils. |t gives the correct variation of |ift with angle of
attack and predicts |ift values which are very close fo measured values at
the same angles of attack. Unfortunately the Joukowski tfransform techniques
also had a number of disadvantages:

1. It is an inverse technique, that is, one does not know beforehand
precisely what the airfoil will look like. As a result it is
difficult to use the technique to estimate the characteristics
of a given airfoil.
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2. 1t leads always to an airfoil with a cusp at the trailing edge.
This is impractical structurally.

3. |t leads to airfolls which have their minimum pressure point very
far forward. Consequently, they have thick boundary layers, and
therefore higher drag and lower maximum |ift values than airfoils
with The minimum pressure point further att.

4. Being an inviscid ftheory, i1 cannot be used ToO estimate either [if?t
characteristics near stall or drag values.

5. It is tedious fo defermine the ordinates of the airfoil accuraTely."

These deficiencies were 500N recognized and many investigators set
about devising more general franstorms which could be used to represent a
greater variety of airfoils, in particular t+hose with finite trailing edge
angles. Kérmén and Trefftz (Ref. 10), von Mises (Ref. 11), Miller (Ref. 12),
and Theodorsen (Ref. 13) were among the leaders ‘n this effort, which by
19372 had reached the point where one could determine the 1ift characteristics
of a great variety of airfoils. The great effort required to complete a
calculation, however, discouraged thoughts of a further generalization in
the transform fechnique. The following outline of Theodorsen's method will
indicate the labor required.

The transform or mapping function is built up in Two stages; in the
first the airfoil profile in the z-plane is mapped info a confour in the
g'-plane through the use of the Joukowski +ransformation

|+ {s desirable That the contour in the z'-plane be as close to a circle as
possible; for this reason The axes in the z-plane should be chosen with a
view foward producing that result. This means that the airfoil should be
distributed as near like an ellipse as possible with respect fo the axes in

the z-plane.

The second stage consists of finding a mapping function which will
transform the near-circle in The z'-plane to an exact circle in the z-plane.
Theodorsen used the transform

> C

where the coefficients Cp, complex in general, have to be determined.
A point on the near or pseudo circle in the ¢'-plane is given by
z' =C e¥(0) o0

The factor ew(e) determines how much +he contour in the g'-plane departs from
that of a circle. The relationship between points on the airfoil and polnts

11



on the pseudo-~circle is given by the equations

X 2C cosh Y cos §

y 2C sinh Y sin 8

These two equations can be put into the form
2sin28=p+ [P2 + (%)2] 12

2 sin2 (@) = —p + [bz + (%)2] vz

where < \z 2
which establishes the function Y(9),

Theodorsen describes a point on the exact circle in the g-plane by
the equation

T = Ce‘POe'¢ = Rei¢
where Yo is a constant not yet determined. R is, of course, also a constant.

The relationship between points on the pseudo-circle and those on the
exact circle Is given by

(8) 16 0
Cew e " _t¢' o
Cewoeie 4 =P (; Eﬁ)

Setting Ch _An*+ 1B, A+ 1B,

n zn RN
and equating real and imaginary parts one obtains

e—ind

LA

(o]
Y- Py = 2 ;—n (Apcos ng + Bpsin ng)
n=

0 -¢ = 2;—”(8,1cos nd)-ﬁhsin ng)
n=

From these i+ fol lows that



2T
o == [ v

2m
An ] 2
PR _g' W(d) cos nd do
Bn 1 y
- = = Y(d) sin nd do
RT T

The foregoing equations define Ug, An, and Bn in fterms of y(¢) or,
equivalently, 8(¢). Since P(8) is usually not easily extracted and when

it has been it is not a simple form, the evaluation of the various
coefficients isbest handled numerically or by a combination of graphical
constructions, approximations, and iferations. Theodorsen's original

method followed the second course. The original paper may be consul ted

for details. To use the method today one would employ numerical techniques.

Once the process has been completed by whichever means are employed,
one then has the pressures and velocities at each point on the airfoil
surface in ferms of those at the equivalent point on the exact circle.

Analyses of the {ift characteristics of various Joukowski airfoils
in the meantime revealed that the thickness contributed little to the
lift. |1 therefore seemed to some that if airfoils for which one had
difficulty finding appropriate conformal transforms could be characterized
by their mean camber lines only, then perhaps one would have a refatively
simple, yet direct method of evaluating the 1ift and pressure distribution
of arbitrary airfoils. Such an approach is obviously most appropriate
when the actual airfoils are thin. These ideas were developed in the
early 1920's by Munk (Ref. 14), Birnbaum (Ref. 15), and Glauert (Ref, 16).

In Glauert's conception the airfoil is replaced by its mean camber
line which he assumed, never lies very far from the chord line. For this
reason he felt justified in making the approximation that the velocities
over the airfoil could be represented by a continuous distribution of
vortices (or a sheet of vorticity)* iying along the chord line. The
variation in vorticity with chord location is not known initially. The
velocity induced at point x' on the chord of the airfoil due to the vortex
sheet is given by

~

- dx
vix') = . Yyox_
* -g mix - x)
* The reader unfamiliar with the theoretical basis of the concept is

referred to the next section of the present work or to Reference 17 for
comp iete mathematical details.



where y is the vortex strength per unit fength. This induced veloclity Is
actually calculated for a point on the chord but, according to Glauert's
approximation may be taken to be the same as the Induced veloclty at the
corresponding point of the airfoil itself.* Since the resultant of the
free stream velocity and the Induced velocity adjacent to the airfoll
must be parallel to the surface at each point of the airfoil and slince
the flow angularities are small, one may write this statement as

v._dy
@ty dx *
where dy/dx is the slope of the mean camber !ine at x'. |t will be seen

that these two equations are sufficient to provide a complete solution of
the problem in terms of the shape of the curved line which represents the

airfoil. The solution is obtained as Y{(x). Then according to Joukowski's
theorem
c
L= f ovydx
0
C
M = f pVyxdx .
0

The method Glauert employed to find Y(x) is Instructive because most
subsequent calculative procedures use refinements of the same idea. Glauert
first changed the independent variable x to 6 according to the transformation

=< -
x =3 1 cos 8)

He assumed that he could represent y by a sine series in 8:

fo+]
Y = 2V {AO cot 8/2 + A, sin ng}

n=

Hence
ydx = ¢V {AO(1 + cos 8) + :?: A, sin n® sin 6} do
n=
[e ]
then 2 Aol + cos @) + 4 Anlcos (n = 198 = cos (n + 1)6}
vix') =¥ d/ﬁ n=l de
m 0 cos 8' - cos 8

* Karamchet! (Ref. 17) presents a very detailed discussion of the

relation of this approximation to the exact formulation.



> sin (n + 1)8' - sin (n - 1)8'
v{_A0+%;A” sin 8' }

v {u Ag + :E: An cos ne'} .

n=1

Substituting of this result in the second of the two original equations glves

d o0
Eﬁ = - AO + EZ; A cos ng'

According to the theory of Fourier series the coefficients A, are
determined from the shape of the alrfoil by evaluating the integrals

T
N | g'-%§ d6
i
An=% f%—;écos ng do

0

where dy/dx now is the slope of the surface at any x between O and c as a
function of 6. The integral can,of course, be evaluated piecewise if the
functional form changes as 6 goes from O to .

Glauert showed that one need find only Ag, Ay, and Ao in order to
determine C_ and Cy,. Note that

L .2 }” 2 . v : .
g;vfg = Ci EEVT ! pcV {AO (1 cos 9) + ;g; Ap sin nB sin 6}do

2 (Ay + A7)
and similarly that
=T - N

He also showed that

__Llpdr g -2 [y 9
Ag + #Ay - & = -7 gﬁ 3 (1~ cos 8)de = % ] c T+cos 6’

- 2y 48
CL = 2m (a t o gy c 1+ cos B )

thus



Since Glauert also showed that

Y =T _ -1
gﬂ < cos 8 do = 2 (o Ao zA5)

)
- Yy - L y . d8 ) _
Cn, Z(gﬂccosede 2fc1+cose>

0

C

B

L -

Values of C; and CM, computed by this method Glauert found to be "in
close agreement with experimental determinations of these quantities." The
method can be seen to be considerably simpler to use than the transform
technique. During the 1930's when designers sought to reduce wing drag by
eliminating external bracing, they were forced by structural considerations
to abandon the very thin airfoils they had been using until that time.

They found that in order to predict the |ift and moment characteristics

of the newer and thicker airfoil sections that were then becoming the
vogue, more elaborate analytical methods or extensive wind tunnel testing
were necessary. One of these analytical methods took the following tack.
Since the sum of solutions to the Laplace equation (the equation describing
inviscid, incompressible filow) is also a solution, one can describe a
thick, cambered airfoil at angle of attack by superimposing solutions

for a curved line (Glauert's method), a flat plate at angle of attack

(also represented by a vortex sheet), and a thick symmetrical airfoil at

a = 0 (using a distribution of sources along the chord line). An examp le
of such a built-up solution is given by Karamcheti (Ref. 17). Reference 18
provides an expositlon of both the thin airfoil and Theodorsen approaches
and indicates how these technlques were used to guide the very significant
series of experimental Investigations carried out during the 1930's by

The NACA.

These investigations sought to measure in considerabie detail
aerodynamic characteristics of several general families of alrfoils.
Since these data were obtained in well-calibrated wind tunnels at flight
Reynolds numbers and presented valid drag data as well, designers came
to regard NACA TR-824, "A Summary of Airfoil Data," (Ref. 19) and its
forerunners as thelr primary data source. It has only been within the
last 20 years or so that interest in Improved analytical methods has been
rekindled. This revival perhaps can be attributed to the simultaneous
occurance of

1. recent, sharp escalation in the cost of making models and g
conducting tests,

2, the desire to optimize certain aspects of airfoil behavior and
to investigate the characteristics of unconventional airfoils,

3. the appearance of the large digital computer which made it

possible to consider the use of what had previously been rather
laborious methods on a routine basis.

16



One of the first and most widely used methods of the current revival
is that described by J. Weber (Refs. 20, 21). In the earlier of the two
papers she treated the case of a symmetrical two-dimensional alrfoll at
angle of attack. By t+ransforming an afrfoll into a siit, she was able
+o show that the source distribution which she used fo represent the
thickness at zero |1ft can be placed along the chord Iine rather than
on the surface with lit+le error, provided the airfoll Is no thicker
than about 10% of the chord. With +hat assumption and the superposition
of a vortex distribution on a flat plate at angle of attack, Weber obtalned
the equation

v ot '
Vix,z) = = cos a |t +1 f a__dz X
;}1 + (a-a,z( y2 ¥ [ Sy 9 XX
+ sin o "1 =X 141 .’4 dz 2z(x') dx!
*r s e et — — .
X TJy \dx 1- (1 - 2x% /) x - x!

The positive sign holds for the upper surface, the negative sign for the
jower surface. V(x,z) Is the velocity along the alrfoll surface. The
pressure coefficients along the surface are given by

= Vix,z) )2
o1 - (45:2)

The most attractive feature of +he method is Weber's technique for
finding a numerical value of V(x,z). She begins by making the following

definitions
N 1 dz dx!
$' ) = ™ !J ax’ x - x!'

s (x =42
dx

(3) 1 f dz _ 2z(x') dx'
ST =g b [dx 1 - Q- 2x')2] x = x' '’

She then evaluates these quantities at specific points, X, along the
chord using the representation
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(xv) = d Suv zu
u._.
s, . & s @
VT Ly Py 2
U=
=1
(3) _ (3) (3)
$ 20 (x,) = 2 Suw Tz + Sy o

The coefficients S v(])’ S v(2), S“v(B) are independent of airfojl shape
and Weber gives Tagles of their values. N is the number of points used
to approximate the airfoil (she gives tables for 8, 16, and 32 points).
Point #1 is always at the trailing edge. p is the feading edge radius
and ¢ is the chord length. Weber also gives a table for finding xy
corresponding to a given value of v. These are the chordwise stations
at which the pressure is calculated. 2y is the airfoil ordinate
corresponding to the chord |ocation given by

Xy = 3 (1 + cos ﬁ1>

where 1 <y < N-1 , |+ will be seen that with the aid of the tables of
universal coefficients Suv(1)x Suv(Z)» Suv(S) the pressure computation is
carried out very easily using a desk calculator.

A significant feature of Weber's method is her retention of the
factor 1/v1 + (dz/dx)Z which materially improves the accuracy of the
pressure computation near the leading edge. (See Appendix F,)

Weber extended her approach to treat cambered airfoils in a second
paper (Ref. 21). She showed that two additional terms are required in
the expression for pressure to account for camber:

=1 - {cos a [1 + S(])(x) * 8(4)(x)] tsino YO - x)/x [1 + 8(3)(x)]}2
1+ 5200 £ 5B )2

“p

where

!

N-1 dz
(5) i (5) - C
sV (%) = Sy’ 2z (5;—> .

=J Iix)
8(4)(x) _ Et; s (&) - Y
u:

z
v c
H H2vg

The sub?cripf "c" refers to the camber line. Weber gives tables for %v(A)
and Sy ) and also provides some second order corrections to ajd in
predicting the pressure in the nose regions more accurately.
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Comparisons between Weber's results and exact theory for Joukowski
airfoils indicate that her mefhod predicts pressures which are low by

about 1%. Maximum camber must be less than about 4% of chord and thickness

less than 10% of chord to obtaln results of this accuracy, however.

The success of Weber's approach and its obvious adaptability to

computer solution (see for example Reference 22) seems 1o have served as

a spur to fthe development of more exact airfoil represenfation schemes

which are practical only 1f carried out by digital computer. The method

of Hess and Smith (Ref. 23) is among the best known of these developmen
'n this method the non-lifting airfoil surface is replaced by a source
sheet with strength o(s) where s is the distance measured along the
airfoil surface. The sum of the velocity induced by the source sheet

ts.

and the free stream velocity is forced to satisfy the condition fthat its

component normal to the airfoil surface at each value of s is zero. Th
statement is written mathematically as a Fredholm integral equation of
the second kind:

o1 ols) + % G(s') &n ris,s')ds' = F(s)

where ris,s') is the distance befween the point of interest, s, and any
other point on the surface, sf o(s') represent the source strengfh at

[

points other than s; g(s) is the source strength at s; and F(s) represenis

ihe component of the free stream velocity normal to the surface at s.
The left side of the equation Then represents the component of the
velocity induced by the source sheet which is normal to the surface.
Nofe that for a given airfoil in a stream of known speed the unknown
quantity is ol(s') which occurs under the infegral sign.

To solve fhis equation Hess and Smith make several approximations:

1. fthe contour of the airfoil can be represented by N straight
line segments,

2. ols') is constant over each segment,

3. the integral is evaluated at only one point—generally the
mid-point—of each segment.

This leads to a system of N simultaneous | inear eguations which can be
~olved to find o on each segment. For good accuracy, N must be large,
particularly in regions of high curvature. Knowing 0 one can then find
the tangential component of velocity from which one can compute the
surface pressure.

To +reat the lifting airfoil, Hess and Smith in effect superpose &
vortex sheet of suitable strength so that the tota!l flow safisfies the
tangency condition as well as the Kutta condition at the trailing edge.

local

Martensen (Ref. 24) chose a different approach. He represented fthe
airfoil by a vortex sheet on ifs surface. By requiring that the strength



of the vortex sheet be identical to the velocity distribution on the
surface of the airfoil, Martensen was able to show that In the interior of
a closed vortex sheet  +the velocity is everywhere zero. Thus on the

inner side of the vortex sheet the net tangential velocity which is a

sum of that due to free stream and that due to the vortex sheet is zero, or

léfﬁ-- %ﬁ'gﬁ' 96 I'(s") 2&n r(s,s")ds' = Voo (gg-cos a + %% sin a) .

This equation has almost exactly the same form as that formulated by
Hess and Smith.

To solve the equation Martensen chose, as did Hess and Smith, to
replace the integral by a summation. As a result he also ended up solving
a system of simultaneous equations. An equation expressing the Kutta
condition is required to complete the formulation. Martensen's method
while giving the velocity distribution on the surface as +he solutlon
to the system of equations does not give good results for very thin
airfoils. The reason is that when the upper and lower surface control
points are very close together, the vortices located there induce strong
fangential velocities on each other. While this induced velocity
actually decays very rapidly for points in the nefghborhood of the control
point, the method of approximating the integral which Martensen used
assumes it to be a constant. Jacob (Ref. 25) used a different limiting
approximation which improves the results but at the cost of restricting
one's freedom in distributing the control points on the airfoil surface.

tf an inviscid fluid flow Is.everywhere parallel to the surface of
a closed body then the surface of the body can be represented by a
streamiine on which the stream function, ¥, is constant. Oellers (Ref. 26}
used This idea to write

Y = Vo vy(s) cos q - V, x(s) sin a - %r- S;i I'(s") &n r(s,s')ds!
m

To solve this equation for Y and I'(s"), the integral is approximated by
a summation of the type used by Hess and Smith.

Chen (Ref. 27) made a very detailed comparison of the three foregoing
methods. He found that when applied to airfolls for which analytical
expressions for the pressure distribution are known, the Hess-Smith method
always gives the correct value of circulation generated by the alrfoil.

On the other hand the computed surface velocity was found to be very
sensitive to the coordinates of the control points., A tiny error In the
input coordinates can produce a wavy behavior of large amplitude In the
computed surface velocity, more so than is reasonable physically. Chen
also tried approximating Martensen's integral in the same way Hess and
Smith approximated theirs. He found that the resulting circulation was
smaller than that found by Hess and Smith because the integration is
carried out along straight line segments rather than curves. This also
leads to some difficulties in the numerical computation because the
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matrix of coefficients is ill-conditioned. Even aftfer curvature effects
are taken into account, the circulation computed by the Martensen-Jacob
method, although larger, is still slightly smaller than that obtained

by the Hess-Smith method. On the other hand, because it is a vortex
sheet and tangential velocities which are considered by Martensen and
Jacob, the computed results are not very sensitive to inaccuracies in
the valiues of the input coordinates.

Chen prefers Oellers' method, primarily because it leads to fewer
computational difficulties. Since it is an integral representation, no
surface slopes must be computed, a process which always causes some
foss in accuracy. Secondly, because the kernel of the integral equation
is simpler in this formu!ation, the computing ftime required is generally
less.

Several improvements in the ftransform approach fo predicting airfoll
characteristics have also appeared in recent years. Lighthill (Ref. 28)
chose to specify fthe desired velocity distribution about the airfoil in
closed form. Sato (Ref. 29) extended this approcach to permit a velocity
distribution of any kind to be specified. As worked out by Sato, the
velocity distribution is assumed in such a way that front and rear
stagnation points can be treated separately. A well-behaved function
g{6) takes up the velocity distribution everywhere with the exception
of the stagnation points and three constants which are imbedded. The
constants are determined by g(8), the fact that the airfoil is a closed
curve, and the fact that the flow field at infinity is uniform. A set
of Initial values must be given to the three constants in order to
obtain g(8) from the specified velocity distribution. This g(8) is
then used to obtain a new set of values for the constants which will
give a closed curve as the airfoil geometry. The process is repeated
iteratively until the before and after constant values match. tn this
way Sato's method always guarantees an airfoil geometry giving the
desired velocity distribution. Because of the repetitive nature of
many of its steps and the need for piecewise integration, it is best
done on a digital computer.

THE AIRFOIL IN VISCOUS FLOW

|+ was of course recognized that all of these approaches would give
somewhat optimistic predictions of airfoil {ift and no prediction at all
of airfoil drag. |t was therefore just a matfer of time until efforts
would be made to attempt to account for the effects of viscosity at
least so far as the |ift produced by an airfoil is concerned. Powell
(Ref. 30) was one of the first to attack the problem in a fairly
rigorous fashion. He modified the airfoil geometry in two ways to
account or the effects of boundary layer displacement of the inviscid
flow. 7o the airfoil! thickness distribution (symmetrical about the mean
camber line) he added the total displacement thickness evenly distributed
between upper and lower surfaces. He recognized, however, that the
displacement thickness is not the same in the two surfaces, being thicker
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on the upper surface. He chose to account for this fact by reflexing the
trailing edge, adding 3(8*ypper - 8* | ower) to the ordinates of the mean
camber }ine. Because the airfoil did not then physically close at x = ¢,
he chose to set the upper and lower pseudo-surface velocities equal at

x = c as a replacement for the Kutta condition. He then employed Weber's
method to predict the surface pressures. Powell assumed in his computation
that 8%(x) was available a priori. He also discussed the problem of
"closing" the pseudo-airfoil in the wake as a means of finding reasonable
surface slopes at x = c.

Apparently Powel|'s paper served as a source of inspiration for the
work reported in Reference 31. Although the sketchy nature of the
discussion in the report makes it difficult to ascertain precisely the
heritage of the approach used or even itfs part